I toss a coin twice. Let X be the number of observed heads. Find the CDF of X.
Answer
$X =$ {the number of observed heads}
$X \sim Binomial(2, \frac{1}{2})$, $R_X = \{0, 1, 2\}$.
$$ p_X(k) = \binom{n}{k} p^k (1 - p)^{n - k}, \quad \text{for } k = 0, 1, 2. $$
$$ F_X(x) = P(X \leq x) = \sum_{k \leq x}p_X(k). $$
$$ F_X(x) = \begin{cases} 0, & \text{for } x < 0 \\ \frac{1}{4}, & \text{for } 0 \leq x < 1 \\ \frac{3}{4}, & \text{for } 1 \leq x < 2 \\ 1, & \text{for } x \geq 2 \end{cases} $$