Lecture 9 + 10: Joint Distribution, Conditioning and Independence

Conditioning on an Event

$$ p_X (x) = P(X = x) $$

$$ \boxed{ p_{X \mid A} (x) = P(X = x \mid A) } $$

$$ P(X \in B) = \sum_{x \in B} p_X (x) $$

$$ \boxed{ P(X \in B \mid A) = \sum_{x \in B} p_{X \mid A} (x) } $$

$$ \boxed{ \sum_x p_{X \mid A} (x) = 1 } $$

$$ f_X (x) \cdot \delta \approx P(x \leq X \leq x + \delta) $$

$$ \boxed{ f_{X \mid A} (x) \cdot \delta \approx P(x \leq X \leq x + \delta \mid A) } $$

$$ P(X \in B) = \int_B f_X (x) \, dx $$

$$ \boxed{ P(X \in B \mid A) = \int_{B} f_{X \mid A} (x) \, dx } $$

$$ \boxed{ \int f_{X \mid A} (x) \, dx = 1 } $$

  • The conditional PDF is zero outside the conditioning set $ A = [a, b] $.
  • Within the conditioning set
    • same shape as the unconditional one
    • but scaled by constant factor $ 1 / P(X \in A) \rightarrow $ ensures $ \int f_{X \mid A} (x) \, dx = 1 $.