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Symbols and Notation

Matrices are capitalized and vectors are in bold type. We do not generally distinguish between proba-
bilities and probability densities. A subscript asterisk, such as in X∗, indicates reference to a test set
quantity. A superscript asterisk denotes complex conjugate.

Symbol Meaning

\ left matrix divide: A\b is the vector x which solves Ax = b
, an equality which acts as a definition
c= equality up to an additive constant
|K| determinant of K matrix
|y| Euclidean length of vector y, i.e.

(∑
i y

2
i

)1/2

〈f, g〉H RKHS inner product
‖f‖H RKHS norm
y> the transpose of vector y
∝ proportional to; e.g. p(x|y) ∝ f(x, y) means that p(x|y) is equal to f(x, y) times

a factor which is independent of x
∼ distributed according to; example: x ∼ N (µ, σ2)
∇ or ∇f partial derivatives (w.r.t. f)
∇∇ the (Hessian) matrix of second derivatives
0 or 0n vector of all 0’s (of length n)
1 or 1n vector of all 1’s (of length n)
C number of classes in a classification problem
cholesky(A) Cholesky decomposition: L is a lower triangular matrix such that LL> = A
cov(f∗) Gaussian process posterior covariance
D dimension of input space X
D data set: D = {(xi, yi)|i = 1, . . . , n}
diag(w) (vector argument) a diagonal matrix containing the elements of vector w
diag(W ) (matrix argument) a vector containing the diagonal elements of matrix W
δpq Kronecker delta, δpq = 1 iff p = q and 0 otherwise
E or Eq(x)[z(x)] expectation; expectation of z(x) when x ∼ q(x)
f(x) or f Gaussian process (or vector of) latent function values, f = (f(x1), . . . , f(xn))>

f∗ Gaussian process (posterior) prediction (random variable)
f̄∗ Gaussian process posterior mean
GP Gaussian process: f ∼ GP

(
m(x), k(x,x′)

)
, the function f is distributed as a

Gaussian process with mean function m(x) and covariance function k(x,x′)
h(x) or h(x) either fixed basis function (or set of basis functions) or weight function
H or H(X) set of basis functions evaluated at all training points
I or In the identity matrix (of size n)
Jν(z) Bessel function of the first kind
k(x,x′) covariance (or kernel) function evaluated at x and x′

K or K(X,X) n× n covariance (or Gram) matrix
K∗ n× n∗ matrix K(X,X∗), the covariance between training and test cases
k(x∗) or k∗ vector, short for K(X,x∗), when there is only a single test case
Kf or K covariance matrix for the (noise free) f values
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Symbol Meaning

Ky covariance matrix for the (noisy) y values; for independent homoscedastic noise,
Ky = Kf + σ2

nI
Kν(z) modified Bessel function
L(a, b) loss function, the loss of predicting b, when a is true; note argument order
log(z) natural logarithm (base e)
log2(z) logarithm to the base 2
` or `d characteristic length-scale (for input dimension d)
λ(z) logistic function, λ(z) = 1/

(
1 + exp(−z)

)
m(x) the mean function of a Gaussian process
µ a measure (see section A.7)
N (µ,Σ) or N (x|µ,Σ) (the variable x has a) Gaussian (Normal) distribution with mean vector µ and

covariance matrix Σ
N (x) short for unit Gaussian x ∼ N (0, I)
n and n∗ number of training (and test) cases
N dimension of feature space
NH number of hidden units in a neural network
N the natural numbers, the positive integers
O(·) big Oh; for functions f and g on N, we write f(n) = O(g(n)) if the ratio

f(n)/g(n) remains bounded as n→∞
O either matrix of all zeros or differential operator
y|x and p(y|x) conditional random variable y given x and its probability (density)
PN the regular n-polygon
φ(xi) or Φ(X) feature map of input xi (or input set X)
Φ(z) cumulative unit Gaussian: Φ(z) = (2π)−1/2

∫ z

−∞ exp(−t2/2)dt
π(x) the sigmoid of the latent value: π(x) = σ(f(x)) (stochastic if f(x) is stochastic)
π̂(x∗) MAP prediction: π evaluated at f̄(x∗).
π̄(x∗) mean prediction: expected value of π(x∗). Note, in general that π̂(x∗) 6= π̄(x∗)
R the real numbers
RL(f) or RL(c) the risk or expected loss for f , or classifier c (averaged w.r.t. inputs and outputs)
R̃L(l|x∗) expected loss for predicting l, averaged w.r.t. the model’s pred. distr. at x∗
Rc decision region for class c
S(s) power spectrum
σ(z) any sigmoid function, e.g. logistic λ(z), cumulative Gaussian Φ(z), etc.
σ2

f variance of the (noise free) signal
σ2

n noise variance
θ vector of hyperparameters (parameters of the covariance function)
tr(A) trace of (square) matrix A
Tl the circle with circumference l
V or Vq(x)[z(x)] variance; variance of z(x) when x ∼ q(x)
X input space and also the index set for the stochastic process
X D × n matrix of the training inputs {xi}ni=1: the design matrix
X∗ matrix of test inputs
xi the ith training input
xdi the dth coordinate of the ith training input xi

Z the integers . . . ,−2, −1, 0, 1, 2, . . .


