C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. © 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Symbols and Notation

Matrices are capitalized and vectors are in bold type. We do not generally distinguish between probabilities and probability densities. A subscript asterisk, such as in X_* , indicates reference to a *test set* quantity. A superscript asterisk denotes complex conjugate.

Symbol	Meaning
\	left matrix divide: $A \setminus \mathbf{b}$ is the vector \mathbf{x} which solves $A\mathbf{x} = \mathbf{b}$
	an equality which acts as a definition
<u></u>	equality up to an additive constant
K	determinant of K matrix
	Euclidean length of vector v i.e. $(\sum u^2)^{1/2}$
$ \mathbf{J} $	BKHS inner product
$\ f\ _{\mathcal{U}}$	BKHS norm
\mathbf{v}^{\top}	the transpose of vector \mathbf{v}
\propto	proportional to: e.g. $p(x y) \propto f(x,y)$ means that $p(x y)$ is equal to $f(x,y)$ times
	a factor which is independent of x
\sim	distributed according to; example: $x \sim \mathcal{N}(\mu, \sigma^2)$
∇ or $\nabla_{\mathbf{f}}$	partial derivatives (w.r.t. f)
$\nabla \nabla$	the (Hessian) matrix of second derivatives
$0 \text{ or } 0_n$	vector of all 0's (of length n)
$1 \text{ or } 1_n$	vector of all 1's (of length n)
C	number of classes in a classification problem
$\operatorname{cholesky}(A)$	Cholesky decomposition: L is a lower triangular matrix such that $LL^{\top} = A$
$\operatorname{cov}(\mathbf{f}_*)$	Gaussian process posterior covariance
D	dimension of input space \mathcal{X}
\mathcal{D}	data set: $\mathcal{D} = \{(\mathbf{x}_i, y_i) i = 1, \dots, n\}$
$\operatorname{diag}(\mathbf{w})$	(vector argument) a diagonal matrix containing the elements of vector ${\bf w}$
$\operatorname{diag}(W)$	(matrix argument) a vector containing the diagonal elements of matrix W
δ_{pq}	Kronecker delta, $\delta_{pq} = 1$ iff $p = q$ and 0 otherwise
\mathbb{E} or $\mathbb{E}_{q(x)}[z(x)]$	expectation; expectation of $z(x)$ when $x \sim q(x)$
$f(\mathbf{x})$ or \mathbf{f}	Gaussian process (or vector of) latent function values, $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^\top$
$\frac{\mathbf{f}_*}{\mathbf{a}}$	Gaussian process (posterior) prediction (random variable)
f _*	Gaussian process posterior mean $G_{\text{constraint}}$
GР	Gaussian process: $f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, the function f is distributed as a
1() $1()$	Gaussian process with mean function $m(\mathbf{x})$ and covariance function $k(\mathbf{x}, \mathbf{x}')$
$h(\mathbf{x})$ or $\mathbf{n}(\mathbf{x})$	<i>either</i> fixed basis function (or set of basis functions) or weight function
$H \text{ or } H(\Lambda)$	set of basis functions evaluated at all training points
$I \text{ of } I_n$	Desced function of the first kind
$J_{\nu}(z)$ $k(\mathbf{x}, \mathbf{x}')$	Dessel function of the first kind \mathbf{x} and \mathbf{x}'
$K (\mathbf{X}, \mathbf{X})$ $K \text{ or } K(\mathbf{Y}, \mathbf{Y})$	$n \times n$ covariance (or Gram) matrix
K	$n \times n$ matrix $K(X, X)$ the covariance between training and test cases
$\mathbf{k}(\mathbf{x})$ or \mathbf{k}	vector short for $K(X \mathbf{x})$ when there is only a single test case
$K_{(\Lambda_*)}$ or K	covariance matrix for the (noise free) \mathbf{f} values
K_f or K	covariance matrix for the (noise free) \mathbf{f} values

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. © 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

	٠	٠	٠
$\mathbf{x}\mathbf{v}$	1	1	1
	-	-	-

Symbols and Notation

Symbol	Meaning
K_y	covariance matrix for the (noisy) y values; for independent homoscedastic noise, $K_{u} = K_{f} + \sigma^{2} I$
$K_{\nu}(z)$	modified Bessel function
$\mathcal{L}(a,b)$	loss function, the loss of predicting b , when a is true; note argument order
$\log(z)$	natural logarithm (base e)
$\log_2(z)$	logarithm to the base 2
$\ell \text{ or } \ell_d$	characteristic length-scale (for input dimension d)
$\lambda(z)$	logistic function, $\lambda(z) = 1/(1 + \exp(-z))$
$m(\mathbf{x})$	the mean function of a Gaussian process
μ	a measure (see section $A.7$)
$\mathcal{N}(\boldsymbol{\mu}, \Sigma) \text{ or } \mathcal{N}(\mathbf{x} \boldsymbol{\mu}, \Sigma)$	(the variable x has a) Gaussian (Normal) distribution with mean vector $\boldsymbol{\mu}$ and
	covariance matrix Σ
$\mathcal{N}(\mathbf{x})$	short for unit Gaussian $\mathbf{x} \sim \mathcal{N}(0, I)$
$n \text{ and } n_*$	number of training (and test) cases
N	dimension of feature space
N_H	number of hidden units in a neural network
\mathbb{N}	the natural numbers, the positive integers
$\mathcal{O}(\cdot)$	big Oh; for functions f and g on N, we write $f(n) = \mathcal{O}(g(n))$ if the ratio
	$f(n)/g(n)$ remains bounded as $n \to \infty$
O	either matrix of all zeros or differential operator
y x and p(y x)	conditional random variable y given x and its probability (density)
\mathbb{P}_N	the regular n -polygon
$\phi(\mathbf{x}_i)$ or $\Psi(X)$	feature map of input \mathbf{x}_i (or input set X)
$\Phi(z)$	cumulative unit Gaussian: $\Phi(z) = (2\pi)^{-1/2} \int_{-\infty} \exp(-t^2/2) dt$
$\pi(\mathbf{x})$	the sigmoid of the latent value: $\pi(\mathbf{x}) = \sigma(f(\mathbf{x}))$ (stochastic if $f(\mathbf{x})$ is stochastic)
$\pi(\mathbf{x}_*)$	MAP prediction: π evaluated at $f(\mathbf{x}_*)$.
$\pi(\mathbf{x}_*)$	mean prediction: expected value of $\pi(\mathbf{x}_*)$. Note, in general that $\pi(\mathbf{x}_*) \neq \pi(\mathbf{x}_*)$
$\mathbb{R} = (f) \text{on } D (o)$	the real numbers f_{a} is a classifier e (averaged with timputs and outputs).
$\tilde{R}_{\mathcal{L}}(f)$ of $R_{\mathcal{L}}(c)$	expected loss for <i>J</i> , or classifier <i>c</i> (averaged w.i.t. inputs and outputs)
$\mathcal{D}_{\mathcal{L}}(l \mathbf{X}_{*})$	expected loss for predicting <i>i</i> , averaged w.i.t. the model's pred. distr. at \mathbf{x}_*
\mathcal{N}_c S(s)	nower spectrum
$\sigma(z)$	any sigmoid function e_{α} logistic $\lambda(z)$ cumulative Gaussian $\Phi(z)$ etc.
σ^2	variance of the (noise free) signal
σ_{f}^{2}	noise variance
θ_n	vector of hyperparameters (parameters of the covariance function)
$\operatorname{tr}(A)$	trace of (square) matrix A
Τ ₁	the circle with circumference l
\mathbb{V} or $\mathbb{V}_{q(x)}[z(x)]$	variance; variance of $z(x)$ when $x \sim q(x)$
\mathcal{X}	input space and also the index set for the stochastic process
X	$D \times n$ matrix of the training inputs $\{\mathbf{x}_i\}_{i=1}^n$: the design matrix
X_*	matrix of test inputs
\mathbf{x}_i	the i th training input
x_{di}	the <i>d</i> th coordinate of the <i>i</i> th training input \mathbf{x}_i
\mathbb{Z}	the integers $, -2, -1, 0, 1, 2,$